» » Мышечной активности. Электрическая активность мышц

Мышечной активности. Электрическая активность мышц

Мышечную систему образно определяют как биологический ключ человека к внешнему миру.

Электромиография - метод исследования функционального состояния органов движения путем регистрации биопотенциалов мышц . Электромиография - это регистрация электрических процессов в мышцах, фактически запись потенциалов действия мышечных волокон, которые заставляют ее сокращаться. Мышца представляет собой массу ткани, состоящую из множества отдельных мышечных волокон, соединенных вместе и работающих согласованно. Каждое мышечное волокно - это тонкая нить, толщиной всего лишь около 0,1 мм до 300 мм длиной. При стимуляции электрическим потенциалом действия, приходящим к волокну от мотонейрона, это волокно сокращается иногда примерно до половины первоначальной длины. Мышцы, участвующие в тонких двигательных коррекциях (фиксация объекта глазами), могут иметь в каждой единице всего по 10 волокон. В мышцах, осуществляющих более грубую регулировку при поддержании позы, в одной двигательной единице может быть до 3000 мышечных волокон.
Поверхностная электромиограмма (ЭМГ) суммарно отражает разряды двигательных единиц, вызывающих сокращение. Регистрация ЭМГ позволяет выявить намерение начать движение за несколько секунд до его реального начала. Помимо этого миограмма выступает как индикатор мышечного напряжения. В состоянии относительного покоя связь между действительной силой, развиваемой мышцей, и ЭМГ линейна.
Прибор, с помощью которого регистрируются биопотенциалы мышц, называется электромиографом, а регистрируемая с его помощью запись электромиограммой (ЭМГ). ЭМГ, в отличие от биоэлектрической активности мозга (ЭЭГ), состоит из высокочастотных разрядов мышечных волокон, для неискаженной записи которых, по некоторым представлениям, требуется полоса пропускания до 10 000 Гц.

Показатели активности дыхательной системы

Дыхательная система состоит из дыхательных путей и легких.
Основной двигательный аппарат этой системы составляют межреберные мышцы, диафрагма и мышцы живота. Воздух, поступающий в легкие во время вдоха, снабжает протекающую по легочным капиллярам кровь кислородом. Одновременно из крови выходят двуокись углерода и другие вредные продукты метаболизма, которые выводятся наружу при выдохе. Между интенсивностью мышечной работы, совершаемой человеком, и потреблением кислорода существует простая линейная зависимость.
В психофизиологических экспериментах в настоящее время дыхание регистрируется относительно редко, главными образом для того, чтобы контролировать артефакты.

Для измерения интенсивности (амплитуды и частоты) дыхания используют специальный прибор - пневмограф. Он состоит из надувной камеры-пояса, плотно оборачиваемой вокруг грудной клетки испытуемого, и отводящей трубки, соединенной с манометром и регистрирующим устройством. Возможны и другие способы регистрации дыхательных движений, но в любом случае обязательно должны присутствовать датчики натяжения, фиксирующие изменение объема грудной клетки.
Этот метод обеспечивает хорошую запись изменений частоты и амплитуды дыхания. По такой записи легко анализировать число вдохов в минуту, а также амплитуду дыхательных движений в разных условиях. Можно сказать, что дыхание - это один из недостаточно оцененных факторов в психофизиологических исследованиях.

Реакции глаз

Для психофизиолога наибольший интерес представляют три категории глазных реакций: сужение и расширение зрачка, мигание и глазные движения.
Пупиллометрия - метод изучения зрачковых реакций. Зрачок - отверстие в радужной оболочке, через которое свет попадает на сетчатку. Диаметр зрачка человека может меняться в пределах от 1,5 до 9 мм. Величина зрачка существенно колеблется в зависимости от количества света, падающего на глаз: на свету зрачок сужается, в темноте - расширяется. Наряду с этим, размер зрачка существенно изменяется, если испытуемый реагирует на воздействие эмоционально. В связи с этим пупиллометрия используется для изучения субъективного отношения людей к тем или иным внешним раздражителям.
Диаметр зрачка можно измерять путем простого фотографирования глаза в ходе обследования или же с помощью специальных устройств, преобразующих величину зрачка в постоянно варьирующий уровень потенциала, регистрируемый на полиграфе.
Мигание (моргание) - периодическое смыкание век . Длительность одного мигания приблизительно 0,35 с. Средняя частота мигания составляет 7,5 в минуту и может варьировать в пределах от 1 до 46 в минуту. Мигание выполняет разные функции в обеспечении жизнедеятельности глаз. Однако для психофизиолога существенно, что частота мигания изменяется в зависимости от психического состояния человека.
Движение глаз широко исследуются в психологии и психофизиологии. Это разнообразные по функции, механизму и биомеханике вращения глаз в орбитах. Существуют разные типы глазных движений, выполняющие различные функции. Однако наиболее важная среди них функция движений глаз состоит в том, чтобы поддерживать интересующее человека изображение в центре сетчатки, где самая высокая острота зрения. Минимальная скорость прослеживающих движений около 5 угл. мин/с, максимальная достигает 40 град/с.
Электроокулография - метод регистрации движения глаз , основанный на графической регистрации изменения электрического потенциала сетчатки и глазных мышц. У человека передний полюс глаза электрически положителен, а задний отрицателен, поэтому существует разность потенциалов между дном глаза и роговицей, которую можно измерить. При повороте глаза положение полюсов меняется, возникающая при этом разность потенциалов характеризует направление, амплитуду и скорость движения глаза. Это изменение, зарегистрированное графически, носит название электроокулограммы. Однако микродвижения глаз с помощью этого метода не регистрируются, для их регистрации разработаны другие приемы. (см. рис.)

Детектор лжи

Детектор лжи - условное название прибора полиграфа, одновременно регистрирующего комплекс физиологических показателей (КГР, ЭЭГ, плетизмограмму и др.) с целью выявить динамику эмоционального напряжения. С человеком, проходящем обследование на полиграфе, проводят собеседование, в ходе которого наряду с нейтральными задают вопросы, составляющие предмет специальной заинтересованности. По характеру физиологических реакций, сопровождающих ответы на разные вопросы, можно судить об эмоциональной реактивности человека и в какой-то мере о степени его искренности в данной ситуации. Поскольку в большинстве случаев специально необученный человек не контролирует свои вегетативные реакции, детектор лжи дает по некоторым оценкам до 71% случаев обнаружения обмана.
Следует иметь в виду, однако, что сама процедура собеседования (допроса) может быть настолько неприятна для человека, что возникающие по ходу физиологические сдвиги будут отражать эмоциональную реакцию человека на процедуру. Отличить спровоцированные процедурой тестирования эмоции от эмоций, вызванных целевыми вопросам, невозможно. В то же время человек, обладающий высокой эмоциональной стабильностью, сможет относительно спокойно чувствовать себя в этой ситуации, и его вегетативные реакции не дадут твердых основания для вынесения однозначного суждения. По этой причине к результатам, полученных с помощью детектора лжи, нужно относиться с должной мерой критичности (см. Видео).

Выбор методик и показателей

В идеале выбор физиологических методик и показателей должен логически вытекать из принятого исследователем методологического подхода и целей, поставленных перед экспериментом. Однако на практике нередко исходят из других соображений, например, доступности приборов и легкости обработки экспериментальных данных.
Более весомыми представляются аргументы в пользу выбора методик, если извлекаемые с их помощью показатели получают логически непротиворечивое содержательное толкование в контексте изучаемой психологической или психофизиологической модели.

Психофизиологические модели. В науке под моделью понимается упрощенное знание, несущее определенную, ограниченную информацию об объекте/явлении, отражающее те или иные его свойства. С помощью моделей можно имитировать функционирование и прогнозировать свойства изучаемых объектов, процессов или явлений. В психологии моделирование имеет два аспекта: моделирование психики и моделирование ситуаций . Под первым подразумевается знаковая или техническая имитация механизмов, процессов и результатов психической деятельности, под вторым организация того или иного вида человеческой деятельности путем искусственного конструирования среды, в которой осуществляется эта деятельность.
Оба аспекта моделирования находят место в психофизиологических исследованиях. В первом случае моделируемые особенности деятельности человека, психических процессов и состояний прогнозируются на основе объективных физиологических показателей, нередко зарегистрированных вне прямой связи с изучаемым феноменом. Например, показано, что некоторые индивидуальные особенности восприятия и памяти можно прогнозировать по характеристикам биотоков мозга. Во втором случае психофизиологическое моделирование включает имитацию в лабораторных условиях определенной психической деятельности, с целью выявления ее физиологических коррелятов и /или механизмов. Обязательным при этом является создание некоторых искусственных ситуаций, в которых так или иначе включаются исследуемые психические процессы и функции. Примером такого подхода служат многочисленные эксперименты по выявлению физиологических Коррелятов восприятия, памяти и т.д.
При интерпретации результатов в подобных экспериментах исследователь должен четко представлять себе, что модель никогда не бывает полностью идентична изучаемому явлению или процессу. Как правило, в ней учитываются лишь какие-то отдельные стороны реальности. Следовательно, каким бы исчерпывающим ни казался, например, какой-либо психофизиологический эксперимент по выявлению нейрофизиологических коррелятов процессов памяти, он будет давать лишь частичное знание о природе ее физиологических механизмов, ограниченное рамками данной модели и используемых методических приемов и показателей. Именно по этой причине психофизиология изобилует разнообразием несвязанных между собой, а иногда и просто противоречивых экспериментальных данных. Полученные в контексте разных моделей такие данные представляют фрагментарное знание, которое в перспективе, вероятно, должно объединиться в целостную систему, описывающую механизмы психофизиологического функционирования.

Интерпретация показателей. Особого внимания заслуживает вопрос о том, какое значение экспериментатор придает каждому из используемых им показателей. В принципе физиологические показатели могут выполнять две основные роли: целевую (смысловую) и служебную (вспомогательную). Например, при изучении биотоков мозга в процессе умственной деятельности целесообразно параллельно регистрировать движения глаз, мышечное напряжение и некоторые другие показатели. Причем в контексте такой работы только показатели биотоков мозга несут смысловую нагрузку, связанную с данной задачей. Остальные показатели служат для контроля артефактов и качества регистрации биотоков (регистрация глазных движений), контроля эмоциональных состояний испытуемого (регистрация КГР), поскольку, хорошо известно, что глазные движения и эмоциональное напряжение могут привносить помехи и искажать картину биотоков, особенно когда испытуемый решает какую-либо задачу. В то же время в другом исследовании регистрация и глазных движений, и КГР может играть смысловую, а не служебную роль. Например, когда предмет исследования - стратегия визуального поиска или изучение физиологических механизмов эмоциональной сферы человека.
Таким образом, один и тот же физиологический показатель может быть использован для решения разных задач. Другими словами, специфика использования показателя определяется не только его собственными функциональными возможностями, но также и тем психологическим контекстом, в который он включается. Хорошее знание природы и всех возможностей используемых физиологических показателей - важный фактор в организации психофизиологического эксперимента.

Значение экспериментов, выполненных на животных. Как уже отмечалось выше, многие задачи в психофизиологии решались и продолжают решаться в экспериментах на животных. (В первую очередь речь идет об изучении активности нейронов.) В связи с этим особое значение приобретает проблема, сформулированная еще Л.С. Выготским. Это проблема специфического для человека соотношения структурных и функциональных единиц в деятельности мозга и определения новых по сравнению с животными принципов функционирования систем, внутри- и межсистемных взаимодействий.
Следует прямо указать, что проблема "специфического для человека соотношения структурных и функциональных единиц в деятельности мозга и определения новых по сравнению с животными" принципов функционирования систем, к сожалению, пока не получила продуктивного развития. Как пишет О.С. Андрианов (1993): "Стремительное "погружение" биологии и медицины... в глубины живой материи отодвинуло на задний план изучение важнейшей проблемы - эволюционной специфики мозга человека. Попытки найти на молекулярном уровне некий материальный субстрат, характерный только для мозга человека и определяющий особенности наиболее сложных психических функций, пока не увенчались успехом".
Таким образом, встает вопрос о правомерности переноса данных полученных на животных для объяснения мозговых функций у человека. Широко принята точка зрения, в соответствии с которой существуют универсальные механизмы клеточного функционирования и общие принципы кодирования информации, что позволяет осуществлять интерполяцию результатов (см., например: Основы психофизиологии под ред. Ю.И. Александрова, 1998).
Один из основателей отечественной психофизиологии Е.Н. Соколов, решая проблему переноса результатов исследований, выполненных на животных, на человека, сформулировал принцип психофизиологического исследования следующим образом: человек - нейрон - модель. Это значит, что психофизиологическое исследование начинается с изучения поведенческих (психофизиологических) реакций человека, Затем оно переходит к изучению механизмов поведения с помощью микроэлектродной регистрации нейронной активности в опытах на животных, а у человека - с использованием электроэнцефалограммы и вызванных потенциалов. Интеграция всех данных осуществляется путем построения модели из нейроподобных элементов. При этом вся модель как целое должна воспроизводить исследуемую функцию, а отдельные нейроподобные элементы должны обладать характеристиками и свойствами реальных нейронов. Перспективы исследований такого рода заключаются в построении моделей "специфически человеческого типа" таких, например, как нейроинтеллект.

Заключение. Приведенные выше материалы свидетельствуют о большом разнообразии и разноуровневости психофизиологических методов. В сферу компетентности психофизиолога входит многое, начиная от динамики нейрональной активности в глубоких структурах мозга до локального кровотока в пальце руки. Закономерно возникает вопрос, каким образом объединить столь различные по способам получения и содержанию показатели в логически непротиворечивую систему. Решение его, однако, упирается в отсутствие единой общепринятой психофизиологической теории.
Психофизиология, которая родилась как экспериментальная ветвь психологии, в значительной степени остается таковой и по сей день, компенсируя несовершенство теоретического фундамента многообразием и изощренностью методического арсенала. Богатство этого арсенала велико, его ресурсы и перспективы представляются неисчерпаемыми. Стремительный рост новых технологий неизбежно расширит возможности проникновению в тайны человеческой телесности. Он приведет к созданию новых обрабатывающих устройств, способных формализовать сложную систему зависимости переменных величин, используемых в объективных физиологических показателях, закономерно связанных с психической деятельностью человека. Независимо от того, будут ли новые решения результатом дальнейшего развития электронно-вычислительной техники, эвристических моделей или других, еще неизвестных нам способов познания, развитие науки в наше время предвосхищает коренное преобразование психофизиологического мышления и методов работы

Словарь терминов

  1. альфа-ритм
  2. пейсмекер
  3. ретикулярная формация
  4. афферентация
  5. кортико-лимбическое взаимодействие
  6. кожно-гальваническая реакция (КГР)

Вопросы для самопроверки

  1. Как связаны ритмические составляющие электроэнцефалограммы с состоянием человека?
  2. Чем обусловлена кожно-гальваническая реакция?
  3. Как различаются пневмография и спирография?
  4. Что дает оценка состояния периферических сосудов?
  5. Как интерпретируют показатели детектора лжи?

Список литературы

  1. Анохин П.К. Очерки по физиологии функциональных систем. М.: Медицина, 1975.
  2. Буреш Я., Бурешова О., Хьюстон Д.П. Методики и основные эксперименты по изучению мозга и поведения. М.: Высшая школа, 1991.
  3. Беленков Н.Ю. Принцип целостности в деятельности мозга. М.: Медицина, 1980.
  4. Бернштейн Н.А. Очерки по физиологии движений и по физиологии активности. М.: Медицина, 1966.
  5. Бехтерева Н.П., Бундзен П.В., Гоголицын Ю.Л. Мозговые коды психической деятельности. Л.: Наука, 1977.
  6. Гнездицкий В.В. Вызванные потенциалы мозга в клинической практике. Таганрог: ТГТУ, 1997.
  7. Данилова Н.Н. Психофизиология. М.: Аспект Пресс, 1998.
  8. Дубровский Д.И. психика и мозг: результаты и перспективы исследований // Психологический журнал. 1990. Т.11. № 6. С. 3-15.
  9. Естественнонаучные основы психологии / Под. ред. А.А. Смирнова, А.Р. Лурия, В.Д. Небылицына. М.: Педагогика, 1978.
  10. Иваницкий А.М., Стрелец В.Б., Корсаков И.А. Информационные процессы мозга и психическая деятельность. М.: Наука, 1984.
  11. Ломов Б.Ф. методологические и теоретические проблемы психологии. М.: Наука, 1984.
  12. Нейрокомпьютер как основа мыслящих ЭВМ. М.: Наука, 1993.
  13. Мерлин В.С. Очерк интегрального исследования индивидуальности. М.: Педагогика, 1986.
  14. Методика и техника психофизиологического эксперимента. М.: Наука, 1987.
  15. Основы психофизиологии / Под ред. Ю.И. Александрова. М., 1998.
  16. Тихомиров О.К. Психология мышления. М.: МГУ, 1984.
  17. Чуприкова Н.И. психика и сознание как функция мозга. М.: Наука, 1985.
  18. Хэссет Дж. Введение в психофизиологию. М.: Мир, 1981.
  19. Ярвилехто Т. Мозг и психика. М.: Прогресс, 1992.

Изменение психофизического состояния студентов в период экзаменационной сессии.

Экзаменационная сессия является одним из структурных элементов
учения - ведущего вида деятельности студентов.

Напряженный характер экзаменационной сессии является ее специфической чертой. Влияние на работоспособность, активность студента и его психическое состояние оказывают и информационные параметры деятельности - содержание, объем экзаменационных билетов, темп предъявления вопросов. Другие характеристики - особенности сдачи
экзамена, связанные с преобразованием - воспоминанием рабочей (заученной) информации, являются основной причиной развития состояния психического напряжения и напряженности. Ситуация экзамена является типичной ситуацией неопределенности.

Можно сделать вывод, что экзамены здоровья учащимся не прибавляют, а наоборот. Действительно, многочисленные исследования показывают, что во время подготовки и сдачи экзаменов имеют место интенсивная умственная деятельность, крайнее ограничение двигательной активности, нарушение режима отдыха и сна, эмоциональные переживания.
Все это приводит к перенапряжению нервной системы, отрицательно влияет на общее состояние и сопротивляемость организма.

Условно можно выделить следующие группы психических состояний,
свойственных этому возрасту:

1. Внутренней дискомфортности, неуютности, раздражительности, рассосредоточенности, бесцельности. Трудно собраться с мыслями, управлять своими действиями. Воля снижена, эмоции расторможены, мысли несобраны.

2. Состояние выраженного недовольства, вражды, негативного отношения к окружающим.

3. Состояния, близкие к агрессивности, драчливости, гневливости, грубости.

4. Аффективные вспышки - драка, грубость, оскорбления, нарушения дисциплины.

Средства физической культуры для оптимизации работоспособности, профилактики нервно-эмоционального и психофизического утомления студентов, повышения эффективности учебного процесса.

1) систематическое изучение учебных предметов студентами в семестре, без
«штурма» в период зачетов и экзаменов.

2) Ритмичную и системную организацию умственного труда.

3) Постоянное поддержание эмоции и интереса

4) Совершенствование межличностных отношений студентов между собой и преподавателями вуза, воспитание чувств.

5) Организация рационального режима труда, питания, сна и отдыха.

6) Отказ от вредных привычек: употребления алкоголя и наркотиков, курения и токсикомании.

7) Физическую тренировку, постоянное поддержание организма в состоянии оптимальной физической тренированности.

8) Обучение студентов методам самоконтроля за состоянием организма с целью выявления отклонений от нормы и своевременной корректировки и устранения этих отклонений средствами профилактики.

Классификация физических упражнений.

1. Классификация физических упражнений по признаку исторически сложившихся систем физического воспитания. Исторически в обществе сложилось так, что все многообразие физических упражнений постепенно аккумулировалось всего в четырех типичных группах: гимнастика, игры, спорт, туризм. Каждая из этих групп физических упражнений имеет свои существенные признаки, но главным образом они различаются педагогическими возможностями, специфическим назначением в системе физического воспитания, а также свойственной им методикой проведения занятий.

2. Классификация физических упражнений по их анатомическому признаку. По этому признаку все физические упражнения группируются по их воздействию на мышцы рук, ног, брюшного пресса, спины и т.д. С помощью такой классификации составляются различные комплексы упражнений (гигиеническая гимнастика, атлетическая гимнастика, разминка и т.п.).

3. Классификация физических упражнений по признаку их преимущественной направленности на воспитание отдельных физических качеств. Здесь упражнения классифицируются по следующим группам:

· скоростно-силовые виды упражнений (например, бег на короткие дистанции, прыжки, метания и т.п.);

· упражнения циклического характера на выносливость (например, бег на средние и длинные дистанции, лыжные гонки, плавание и т.п.);

· упражнения, требующие высокой координации движений (например, акробатические и гимнастические упражнения, прыжки в воду, фигурное катание на коньках и т.п.);

· упражнения, требующие комплексного проявления физических качеств и двигательных навыков в условиях переменных режимов двигательной деятельности, непрерывных изменений ситуаций и форм действий (например, спортивные игры, борьба, бокс, фехтование).

4. Классификация физических упражнений по признаку биомеханической структуры движения. По этому признаку выделяют циклические, ациклические и смешанные упражнения.

5. Классификация физических упражнений по признаку физиологических зон мощности. По этому признаку различают упражнения максимальной, субмаксимальной, большой и умеренной мощности.

6. Классификация физических упражнений по признаку спортивной специализации. Все упражнения объединяют в три группы: соревновательные, специально-подготовительные и общеподготовительные.

Мышечная активность и сердечная деятельность, их взаимосвязь.

Функции мышц в человеческом теле – производство работы и энергии, используя получаемые с пищей вещества, первую очередь углеводы и жиры.
Хорошему здоровью необходима хорошая мышечная активность. Мышцы способны выполнять свою работу только при определённых условиях – необходима энергия. Энергия добывается путём окисления питательных веществ – в первую очередь жиров.

Человеческое тело состоит из мышц. Сердце – это мышца.

Выявлено, что выполнение физической нагрузки большой мощности усиливает активность и взаимосвязи мышечной и сердечно-сосудистой систем. В состоянии покоя и при утомлении проявляется линейный характер взаимосвязей двух систем, при врабатывании и в устойчивом состоянии - экспоненциальный. Развитие компенсированного утомления, не меняя ведущей роли четырехглавой, двуглавой и икроножной мышц нижних конечностей в реализации усилия, изменяет их взаимосвязи и парциальную роль на различных участках циклического движения, повышает их электрическую активность. При развитии декомпенсированного утомления снижается электрическая активность и нарушается координация во взаимосвязях ведущих мышц правой и левой конечности.

Активность и взаимосвязи МС и ССС зависят от условий функционирования (покой, работа различной мощности), периода работы, индивидуальных особенностей.

Переход от состояния покоя к работе, усиливая деятельность мышечной и ССС, синхронизирует их активность, степень их интеграции, изменяет характер взаимодействия - от линейного - в покое и при утомлении, к экспоненциальному - при врабатывании и устойчивом состоянии.

Для нормальной деятельности мозга нужно, чтобы к нему поступали импульсы от различных систем организма, массу которого почти наполовину составляют мышцы. Работа мышц создает громадное число нервных импульсов, обогащающих мозг потоком воздействий, поддерживающих его в рабочем состоянии. При выполнении человеком умственной работы усиливается электрическая активность мышц, отражающая напряжение скелетной мускулатуры. Чем выше умственная нагрузка и чем сильнее умственное утомление, тем более выражено генерализованное мышечное напряжение. Связь движений с умственной деятельностью характеризуется следующими закономерностями. Во время напряженной умственной работы у людей наблюдается сосредоточенное выражение лица, сжатые губы и это тем заметнее, чем сильнее эмоции и сложнее задача, которую приходится решать. При попытках усвоить какой-либо заданный материал у человека бессознательно сокращаются и напрягаются мышцы, сгибающие и выпрямляющие коленный сустав. Происходит это потому, что импульсы, идущие от напряженных мышц в ЦНС стимулируют деятельность головного мозга, помогают ему поддерживать нужный тонус. Деятельность, не требующая физических усилий и точно координированных движений, чаще всего сопровождается напряжением мышц шеи и плечевого пояса, а также мышц лица и речевого аппарата, поскольку их активность тесно связана с нервными центрами, управляющими вниманием, эмоциями, речью. Если человек быстро и долго пишет, напряжение постепенно перемещается от пальцев к мышцам плеча и плечевого пояса. Этим нервная система стремится активизировать кору головного мозга и поддержать работоспособность. Продолжительная работа вызывает привыкание к этим раздражениям, начинается процесс торможения, работоспособность снижается, поскольку кора головного мозга больше не в состоянии справиться с нервным возбуждением, и оно распространяется по всей мускулатуре. Погасить его, освободить мышцы от излишнего напряжения можно с помощью активных движений, физических упражнений.

Тонус нервной системы и работоспособность головного мозга могут поддерживаться долгое время, если сокращение и напряжение различных мышечных групп ритмически чередуются с их последующим растяжением и расслаблением. Такой режим движений характерен для ходьбы, бега, передвижения на лыжах, коньках и др. Для успешной умственной работы нужен не только тренированный мозг, но и тренированное тело, мышцы, помогающие нервной системе справляться с интеллектуальными нагрузками. Устойчивость и активность памяти, внимания, восприятия, переработки информации прямо пропорциональны уровню физической подготовленности. Различные психические функции во многом зависят от определенных физических качеств - силы быстроты, выносливости и др. Следовательно, должным образом организованная двигательная активность и оптимальные физические нагрузки до, в процессе и после окончания умственного труда способны непосредственно влиять на сохранение и повышение умственной работоспособности.

Прием-прием, есть кто? Азбука Бодибилдинга на связи! И в этот пятничный денек мы разберем необычную тему под названием электрическая активность мышц.

По прочтении Вы узнаете что такое ЭМГ как явление, для чего и в каких целях используется данный процесс, почему большинство исследований по “лучшести” упражнений оперируют именно данными электрической активности.

Итак, рассаживайтесь поудобней, будет интересно.

Электрическая активность мышц: вопросы и ответы

Эта уже вторая по счету статья в цикле “Muscle inside”, в первой мы говорили про , а в целом цикл посвящен явлениям и мероприятиям, которые протекают (могут протекать) внутри мускулов. Данные заметки позволят Вам лучше понимать накачательные процессы и быстрее прогрессировать в улучшении телосложения. Почему мы, собственно, решили рассказать именно про электрическую активность мышц? Все очень просто. В наших технических (и не только) статьях мы постоянно приводим списки из лучших упражнений, которые формируются именно на основании данных исследований по ЭМГ.

Вот уже на протяжении практически пяти лет, мы сообщаем Вам эту информацию, но ни разу за это время не раскрыли саму суть явления. Что же, сегодня мы восполним этот пробел.

Примечание:
Все дальнейшее повествование по теме электрическая активность мышц, будет разбито на подглавы.

Что такое электромиография? Замер активности мышц

ЭМГ представляет собой метод электродиагностической медицины для оценки и регистрации электрической активности, создаваемой скелетными мышцами. Процедура ЭМГ выполняется с использованием прибора, называемого электромиографом, для создания записи, называемой электромиограммой. Электромиограф обнаруживает электрический потенциал, генерируемый мышечными клетками, когда они электрически или неврологически активированы. Для понимания сути явления ЭМГ необходимо иметь представление о структуре мышц и протекающих внутри процессах.

Мышца представляет собой организованную “коллекцию” мышечных волокон (м.в.) , которые, в свою очередь, состоят из групп компонентов, известных как миофибриллы. В костно-скелетной системе нервные волокна инициируют электрические импульсы в м.в., известные как потенциалы действия мышц. Они создают химические взаимодействия, которые активируют сокращение миофибрилл. Чем больше активированных волокон в мышечной части, тем сильнее сокращение, которое может произвести мускул. Мышцы могут только создавать усилие при своем сокращении/укорочении. Тяговое и толкающее усилие в костно-мышечной системе генерируется сопряжением мышц, которые действуют в антагонистической модели: одна мышца сокращается, а другая расслабляется. Например, при подъеме гантели на бицепс, двуглавая мышца плеча при подъеме снаряда сокращается/укорачивается, а трицепс (антагонист) находится в расслабленном состоянии.

ЭМГ в различных видах спорта

Метод оценки основной мышечной активности, возникающей при физическом движении, получил широкое распространение во многих видах спорта, особенно фитнесе и бодибилдинге. Измеряя количество и величину импульсов, возникающих во время мышечной активации, можно оценить, насколько стимулируется мышечная единица, чтобы придать особую силу. Электромиограмма представляет собой визуальную иллюстрацию сигналов, генерируемых во время мышечной активности. И далее по тексту мы рассмотрим некоторые “портреты” ЭМГ.

Процедура ЭМГ. Из чего она состоит и где проводится?

В большинстве своем замерить электрическую активность мышц возможно только в специальных научно-исследовательских спортивных лабораториях, т.е. профильных учреждениях. Современные фитнес-клубы не предоставляют такой возможности ввиду отсутствия квалифицированных специалистов и низкой востребованности со стороны аудитории клуба.

Сама процедура состоит из:

  • размещения на теле человека в определенной области (на или рядом с исследуемой мышечной группой) специальных электродов, подсоединенных к блоку, измеряющему электрические импульсы;
  • запись и передача сигналов в компьютер через блок беспроводной передачи данных ЭМГ от расположенных поверхностных электродов для последующего отображения и анализа.

В картинном варианте процедура ЭМГ выглядит следующим образом.


Мышечная ткань в состоянии покоя электрически неактивна. Когда мышца добровольно сжимается, начинают появляться потенциалы действия. По мере увеличения силы сокращения мышц все больше и больше мышечных волокон вырабатывают потенциалы действия. Когда мышца полностью сжимается, должна появиться беспорядочная группа потенциалов действия с различными скоростями и амплитудами (полный набор и интерференционная картина) .

Таким образом, процесс получения картинки сводится к тому, что испытуемый выполняет конкретное упражнение по конкретной схеме (сеты/повторения/отдых) , а приборы фиксируют генерируемые мышцами электрические импульсы. В конечном итоге результаты отображаются на экране ПК в виде определенного графика импульсов.

Чистота результатов ЭМГ и понятие MVC

Как Вы, наверное, помните из наших технических заметок, иногда мы приводили разные значения по электрической активности мышц даже для одного и того же упражнения. Это связано с тонкостями проведения самой процедуры. В целом на конечные результаты оказывает влияние ряд факторов:

  • выбор конкретной мышцы;
  • размер самой мышцы (у мужчин и женщин разные объемы) ;
  • правильное размещение электрода (в конкретном месте поверхностной мышцы – брюшко мышцы, продольная средняя линия) ;
  • процент жира в организме человека (чем больше жира, тем слабее сигнал ЭМГ) ;
  • толщина – насколько сильно ЦНС генерирует сигнал, насколько быстро он поступает в мускул;
  • стаж тренировок – насколько у человека хорошо развита .

Таким образом, ввиду указанных начальных условий разные исследования могут давать разные результаты.

Примечание:

Более точные результаты активности мышц в конкретном движении дает внутримышечный метод оценки. Это когда игольчатый электрод вводят через кожу в мышечную ткань. Игла затем перемещается в несколько точек в расслабленной мышце, чтобы оценить как активность вставки, так и активность покоя в мышцах. Оценивая активность покоя и вставки, электромиограф оценивает активность мышц во время добровольного сокращения. По форме, размеру и частоте результирующих электрических сигналов судят о степени активности конкретной мышцы.

В процедуре электромиографии одной из основных ее функций является то, как хорошо можно активировать мышцу. Наиболее распространенный способ это выполнение максимального добровольного сокращения (MVC) тестируемой мышцы. Именно MVC, в большинстве исследований, принимается как наиболее достоверное средство анализа пиковой силы и силы, создаваемой мышцами.

Однако наиболее полную картину по активности мышц способно дать предоставление обоих наборов данных (MVC и ARV – средние) значений ЭМГ.

Собственно, с теоретической частью заметки разобрались, теперь окунемся в практику.

Электрическая активность мышц: лучшие упражнения для каждой мышечной группы, результаты исследований

Сейчас мы начнем собирать шишки:) от нашей многоуважаемой аудитории, и все потому, что займемся неблагодарным занятием – доказыванием того, что конкретное упражнение является лучшим для конкретной мышечной группы.

А почему оно неблагодарное, Вы поймете по ходу повествования.

Итак, принимая показания ЭМГ во время различных упражнений, мы можем нарисовать иллюстративную картину уровня активности и возбуждения внутри мышцы. Это может указывать, насколько эффективным является конкретное упражнение при стимуляции конкретного мускула.

I. Результаты исследований (профессор Tudor Bompa, Mauro Di Pasquale, Италия 2014)

Данные представлены по шаблону, мышечная группа-упражнение-процент активации м.в.:

Примечание:

Процентное значение указывает пропорцию активированных волокон, значение 100% означает полную активацию.

№1. Широчайшие мышцы спины:

  • 91 ;
  • 89 ;
  • 86 ;
  • 83 .

№2. Грудные мышцы (большая пекторальная) :

  • 93 ;
  • 87 ;
  • 85 ;
  • 84 .

№3. Передняя дельта:

  • жим гантелей стоя – 79 ;
  • 73 .

№4. Средняя/боковая дельта:

  • подъемы прямых рук через стороны с гантелями – 63 ;
  • подъемы прямых рук через стороны на верхнем блоке кроссовера – 47 .

№5. Задняя дельта:

  • разведение рук в наклоне стоя с гантелями - 85 ;
  • разведение рук в наклоне стоя с нижнего блока кроссовера – 77 .

№6. Бицепс (длинная головка) :

  • сгибание рук на скамье Скотта с гантелями – 90 ;
  • сгибание рук с гантелями сидя на скамье под углом вверх - 88 ;
  • (узкий хват) – 86 ;
  • 84 ;
  • 80 .

№7. Квадрицепс (прямая мышца бедра) :

  • 88 ;
  • 86 ;
  • 78 ;
  • 76 .

№8. Задняя поверхность (бицепс) бедра:

  • 82 ;
  • 56 .

№9. Задняя поверхность (полусухожильная мышца) бедра:

  • 88 ;
  • становая тяга на прямых ногах – 63 .

С уважением и признательностью, Протасов Дмитрий .